The goal of business process simulation is to write a computer program that behaves
similarly to your business process with respect to the relevant properties that you want to
measure. Usually, these include:

* timing properties, such as the waiting times of clients and the total time it takes for
the process to complete for a client;

* costs, such as the total cost of running the process or the cost of running the process
for a particular client; and

* the number of resources that work on the process.

Once a simulation has been built that indeed behaves similarly to the actual business
process in real life, changes can be made to the business process to see what the impact
of the change would be on the relevant properties. This is also known as what-if analysis.
For example, we could create a simulation of a help-desk process and subsequently do a
what-if analysis to see if we can reduce the number of help-desk employees, while still
being able to respond to customers within 24 hours. We could also do a what-if analysis on
what would happen to the occupancy rate of our employees and the time it takes to answer
our customers if we do more work in parallel.

This chapter presents a specific form of simulation called discrete event simulation,
which can be used to model the state of a system and the events that change the state of the
system. The system can be a factory in which events happen such as starting to manufacture
a product on a machine, completing the production on a machine, or a machine breaking
down. The system can also be a business process, in which customers arrive, are served by
employees, and leave again.
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The Basics

In a discrete event simulation, the state of a system changes when an event happens.
Nothing but events can change the system. Consequently, a discrete event simulation can
be completely described by modeling what makes up the state of the system, which events
can happen in the system, in which state they can happen, and how they change the state of
the system into a new state (in which new events can happen). We consider events ‘atomic’,
meaning that events do not take time and that, when an event happens, it happens as a
whole - uninterrupted by other events. After all it does not take time, so no other events
can happen in between, because there is no ‘in between’. It is possible that multiple events
happen at the same time. In that case one event needs to be executed before the other.
Which of the events happens before the other is typically undefined and therefore random.
However, this is important, because one event can change the state of the system in such a
way that the other cannot happen anymore. For example, if two customers can start to be
served at the same moment, but there is only one resource available to help them, when the
event of starting to serve one customer happens, the other customer will have to wait.

As an example of a discrete event simulation, consider a system consisting of a queue
and a cashier at a cash register. The state of the system is described by the number of
customers in the system and whether the cashier is busy serving a customer. The state can
change due to the events of a new customer arriving in the queue, the cashier starting to
service the customer, or the cashier completing their service.
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Figure 1.1: an example timeline of a discrete event simulation.

For the example, let us assume that one customer arrives on average each minute
(according to a Poisson process) and it takes on average (0.8 minutes to serve a customer
(exponentially distributed). Figure 1.1 shows a possible timeline of events that matches
this description. It also shows how the state of the system, represented as a queue, develops
over the timeline. The cashier resource is represented as a circle and the queue of waiting
customers is represented as the rectangle in front of the resource. The first customer, ¢y,
arrives at time r = 0. Now, the state of the systems changes to one customer waiting in
the system. No customer is being served, so the cashier resource is drawn outside of its
circle. Since the cashier, labeled resource rl, is available, we can immediately start serving
the customer, which leads to a state of the system where customer c; is being served.
In the timeline, serving this customer takes exactly 0.8 minutes, after which the cashier
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completes their service, leading to a system where there is no waiting customer and no
customer being served. The next customer arrives at # = 1 and can again start to be served
immediately. The next customer, c3, arrives at t = 1.7. However, at that time customer ¢,
is still being served, so ¢3 will have to wait in line. And so on.

The timeline from Figure 1.1 is an example of a timeline for a system in which events
have already happened. However, initially no events will have happened in the system.
Events will happen over time, when the state of the system allows for them. When they
do, they will change the state of the system, such that other events can happen. Note that
earlier events must always happen first, so events happen in the order in which they appear
on the timeline. Time also progresses as events happen. So, initially the time will be 0, and
at each point in the simulation the earliest event that can happen will happen and the time
of the simulation will be the time moment of that event. This principle prevents inadvertent
time travel: when an event that happens at a later time happens before an event that at an
earlier time. For example, when a customer starts to be served before it arrives.
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Figure 1.2: the example timeline built gradually.

Figure 1.2 shows how the timeline is built up gradually after each event. It distinguishes
between events that are planned to happen and events that have happened happen. The
latter events are underlined. The former are not. Initially, only the arrival of a customer
can happen. When it happens, it enables the start of serving the customer that just arrived.
It also enables the arrival of the next customer. Now these two events can happen. In
the figure, starting to serve the customer happens next, because it is the earlier event.
This enables the completion of serving that customer. So now the completion of serving
the customer and the arrival of the next customer are enabled. Completing to serve the
customer will happen next, because it is the earlier event. When it happens, the current
simulation time will also be updated to r = 0.8, because this is the time at which the event
happened.

We need one last ingredient to fully understand the basics of discrete event simulation.
Remember that whether an event can happen depends on the state of the system and that
when an event happens it changes the state of the system. To be able to represent that, we
introduce variables that represent the state of the system.

Figure 1.3 shows a timeline of the situation after the first customer has arrived and
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Figure 1.3: the example timeline with variables.

has started to be served. This timeline introduces the state variables arrival, waiting,
resource, and busy and shows how events change the values of those variables and,
consequently, of the state of the system. We use the arrival variable to represent the arrival
of the next customer. At time t=0, the value for arrival is 1, meaning that at that time the
first customer (with number 1) can arrive. Also, the value for resource is ry, representing
the available cashier. When the arrive event happens, the value for arrival is removed,
which is why it is greyed out in the timeline. arrival produces a new value for arrival:
the value 2 at time t=1. This is the moment at which the next customer can arrive. It also
produces a value ¢ for the variable waiting, representing that customer c; has arrived and
is available in the waiting variable. Next, the start event happens. It takes the values from
waiting and resource and produces a value (cy,r;) in the busy variable, representing
that resource r; is now busy serving c1. The value for ¢ in the waiting variable and for
r1 in the resource variable are removed.

Modeling a Discrete Event Simulation

The timelines from the previous section show what has happened in a particular simulation
scenario. However, to model a discrete event simulation in general, we need to model all
the possible states of the system and how events change the state in general.

We model the possible states of the system by modeling the variables that represent
that state. In our example, we introduced the variables arrival, waiting, resource, and
busy as representing the state of the system.

We can then define conditions on when an event can happen as conditions on the
state variables of the system. Moreover, we can define events as functions that take state
variables as input and produce values for (other) state variables. For example, the condition
for starting to serve a customer would be that there is a customer in the variable waiting
and a cashier in the variable resource, and when we start to serve the customer, the
customer and the cashier can be removed from their variables and put into another variable
busy, which represents that the resource is busy serving a customer.

More precisely, we define simulation behavior rules in line with the theory of Petri nets
as follows:

* an event can happen when each of its specified parameter variables has a value; and
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* when an event happens, it removes a value from its specified parameter variables
and puts a value in its return variables.
In this way, we do not explicitly have to model the constraint that there must be a customer
waiting and a cashier resource available, because if waiting and resource are input
parameters of the start event, this is an implicit requirement: the start event can only
happen when each of its specified parameter variables, waiting and resource, have a
value.

We can give variables a value with a delay, meaning that the values are not immediately
available, but only when the simulation reaches a particular moment in time. This allows us
to influence the moment in time at which events happen, because events can only happen
when their parameter variables have a value. In this way we can model interarrival time,
by only allowing the next arrival to happen after a specified interarrival time. We can do
that by making the arrive event depend on a variable that we give a value with intervals
determined by the interarrival time. Similarly, we can model processing time, by only
allowing service to complete after the processing time has passed, i.e. by making the
complete event depend on a variable that is available after the processing time has passed.

Finally, to enable the simulator to start, we need to set up an initial state of the system,
from which the first events can start. For our example system that would be a state in
which no customers have arrived, but there is a single resource available. We then define
the start event as follows in pseudo code.

1 def start(w: waiting, r: resource): busy
2 return (w, r)Qtime+exp(1/0.8)

This definition states that the start event uses a value from the waiting variable and
the resource variable, which it will internally refer to as w and r. It returns a value for the
busy variable. The function body specifies that this value is produced as the tuple that is
the combination of the input values w from the waiting variable and r from the resource
variable. It produces this value with a delay, represented by the @ notation. The delay
compared to the current time is a draw from an exponential distribution with a rate A = ﬁ,
which is equal to the service time of the example. In other words, when busy, the customer
and the resource are available again after on average 0.8 minutes. Figure 1.4 graphically
represents the event as a Petri net. In this representation, the variables are represented
as circles - called places in Petri net theory - and the events are represented as squares -
called transitions in Petri net theory. The Petri net represents the same as what was just
introduced: that the start event takes values from resource (calling it r) and from waiting
(calling it w) and produces a value in busy according to the formula that is provided.

Q\ (w, r)@time+exp(1/0.8)
resource < >
Q/wvstart busy

waiting

Figure 1.4: Petri net representation of the start event.

We define the complete event as follows in pseudo code.
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1 def complete(b: busy): resource
2 return b[1]@time

Note that, because of the delay that the value of busy gets from the start event, the
complete event can only happen after the processing time has passed. When it happens,
it puts the value of the cashier - the second element of the busy tuple b - back into the
resource variable. It does so with immediate effect, meaning that the cashier resource
is available immediately upon completion of the service. Figure 1.5 shows a Petri net
representation of the complete event.

QL.

busy complete resource

b[1]@time

Figure 1.5: Petri net representation of the complete event.

We define the arrive event as follows.

1 def arrive(a: arrival): arrival, waiting
2 return (a+1)@time+exp(1l), 'c'+str(a)@time

This event can only happen when there is a value in the arrival variable. We can
enable this by putting the value 1 at time # = 0 into the arrival variable at the initialization
of the simulation. We will use this value to represent the unique identifier of the next
customer to arrive. By putting this value into the arrival variable the arrive event
can happen right at the start of the simulation. When it happens, it produces values in
the arrival and the waiting variables. The arrival value is produced with a delay
according to the interarrival time, such that the next time the arrive event can happen
is after the interarrival time. The value that it produces in the waiting variable is a
string representing the customer identifier. This value is produced without delay, meaning
that after arrival, the customer is waiting immediately. Figure 1.6 shows a Petri net
representation of the simulation scenario as a whole, integrating the three events that are
defined above. The benefit of this representation is that it is possible to get an overview of
how the simulation model and the various events and variables fit together as a whole.
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Figure 1.6: Petri net representation of the simulation scenario.

1.3 Modeling a Discrete Event Simulation in SimPN

The theory of Discrete Event Simulation is implemented in a Python library called SimPN.
There exist many dedicated business process simulation tools. This includes simulation
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tools that have specifically been designed to simulate customer-oriented business processes
modeled in the BPMN modeling language, such as Signavio. It also includes general-
purpose simulation tools, such as Arena, that can both be used to model customer-oriented
business processes and resource-oriented business processes, such as transportation pro-
cesses or production processes. There even exist general purpose tools, such as CPN Tools,
that are based on Petri nets. The benefit of using such tools is that simple simulations are
relatively easy to build and reporting facilities are built-in, including the possibilities for
creating great-looking graphs and consultancy reports. The main benefit of using SImPN
is the flexibility that you have, because it is directly integrated into your programming
environment. Due to that flexibility, you can, for example, directly connect your simulation
to the database of your currently active cases and occupation of your resources. You can
then do a simulation to see if your currently active cases are likely to complete on time and
take action if the simulation tells you that they will not. Such a model of your process as it
is currently running is also known as a digital twin. SimPN is ideally suited for creating a
digital twin of your process, because it can not only easily be connected to the real-time
data of what is going on in your process, but also to prediction and optimization libraries
that can be used to calculate the appropriate action in the current state of your process.
Because of that flexibility, SimPN is a great tool to have in your programming toolkit.
There exists another good library for simulation in Python, called SimPy. This library uses
more specific simulation concepts, based on queuing theory. This makes SimPy easier to
get started with, but also less expressive.

SimPN follows the modeling paradigm introduced in the previous section, in that to
create a simulation model, you need to model:

1. the variables that describe the statespace of the system;

2. the initial state of the system; and

3. the events that describe when the system can change and what happens when it does.
This section explains how these three elements can be modeled in SimPN.

We must define the simulation model, which can simply be done by instantiating the
SimProblem class as follows.

1 from simpn.simulator import SimProblem
2

3 shop = SimProblem()

This code imports the relevant library elements and creates a new simulation model in a
variable named shop.

In our example, the state of the system consists of a variable that indicates the sequence
number of the next customer to arrive, customers that are waiting in line at the cash register,
resources that are free to help the customer, and resources that are busy helping a customer.
Consequently, we can model the state of our simulation by instantiating and naming them
as follows.

1 arrival = shop.add_var("arrival")
> waiting = shop.add_var("waiting")
3 resource = shop.add_var("resource"
4+ busy = shop.add_var("busy")

Having defined our variables, we can now model our initial state by assigning values
to the variables as follows.
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1 resource.put("ril")
» arrival.put(1l)

A simulation variable is different from a regular Python variable in two important ways.
First, a simulation variable can contain multiple values, while a regular Python variable can
only contain one value. This is why we use put on a variable rather than an assignment.
put allows us to put multiple values into a variable. For example, we could add another
resource.put ("r2") statement into the code, which would add another cashier resource.
Second, values of a simulation variable are available from a specific moment in (simulation)
time. By default, values that are put into a variable are available immediately from the start
of the simulation time 0. However, we can change that by adding a time of availability
to put statement. For example, changing the arrival to arrival.put (1, time=1) would
make the value available at simulation time 1.

Finally, we can define our simulation events. The events are defined similarly to the
pseudocode in the previous section. However, they are defined in two parts. The start event
is defined as follows.

1 from simpn.simulator import SimToken
: from random import expovariate as exp

4+ def start(c, r):
5 return [SimToken((c, r), delay=exp(1/0.8))]

7 shop.add_event ([waiting, resource], [busy], start)

First, let’s focus on the shop.add_event statement. This tells the simulator that our event
takes a value from the waiting variable and a value from the resource variable as input,
produces a value for the busy variable as output, and uses the start function to do so.

The start function defines how the event modifies the system state (variables). Taking
a value from the waiting variable (and calling it ¢) and a value from the resource
variable (and calling it r), the function returns a tuple (c, r), representing that customer c is
being processed by resource r. This return value will be put into the busy variable, as per
the shop.add_event definition. However, as you can see, there are several things going
on in the return statement.

First, the function does not return a single value, but a list of values. This is simply a
convention that you have to remember: event functions return a list of values. The reason
for this is that we defined the simulation event in shop.add_event as taking a list of
values (consisting of one value from waiting and one value from resource) as input and
as producing a list of values (consisting of one value for busy) as output. Accordingly, we
must produce a list of values as output, even if there is only one value.

Second, the function does not return the tuple (c,r) itself, but returns a SimToken
containing the resource. That is because in simulation, values have a time from which they
are available. A value with a time is called a token. This represents that the value is only
available at, or after, the specified time. In this case, the resource value is made available
after a delay that is exponentially distributed with a A = 0—2.

Similarly, we can define the complete and arrive events as follows.
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1 def complete(b):
2 return [SimToken(b[1])]

+ shop.add_event ([busy], [resource], complete)

¢ def arrive(a):
7 return [SimToken(a+l, delay=exp(1)), SimToken('c' + str(a))]

o shop.add_event([arrival], [arrival, waiting], arrive)

Now we have modeled the entire system and we can simulate it. To do that, we call the
simulate function on the model. This function takes two parameters. One is the amount
of time for which the simulation will be run. The other is the reporter that will be used to
report the results of the simulation. In our example we will run the simulation for 2.5. We
will use a SimpleReporter from the reporters package to report the result. This reporter
simply prints each event that happens to the standard output.

1 from simpn.reporters import SimpleReporter
2

; shop.simulate(2.5, SimpleReporter())

Running the code should output something like the following, representing that the
first customer arrives at time 0, is started immediately and completes at time 0.8 and so on.

arrive{arrival: 1}@t=0

start{waiting: c1, resource: r1}@t=0
complete{busy: ('cl', 'r1')}@t=0.8
arrive{arrival: 2}0t=1

start{waiting: c2, resource: ri}@t=1
arrive{arrival: 3}0@t=1.7
complete{busy: ('c2', 'ri1')}et=1.9
start{waiting: c3, resource: r1}0t=1.9

1.4 Guard Conditions

Events can only happen when the variables that they use have a value. However, in
many cases we want events to only happen in case variables have a specific value. For
example, we only want breakable items in a warehouse to be packaged or we only want to
accept customers for a loan who have a high enough credit rating. To place such specific
constraints on when an event can happen, we can add a guard condition on the event.

A guard condition specifies the precise values for which an event can happen. For
example, the condition that only customers with a credit rating over 100 can get a loan can
be expressed as follows.

1 customers = shop.add_var("customers")
> customers.put(("cl", 90))
3 customers.put(("c2", 110))
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accepted_customers = shop.add_var("accepted customers")

def accept(c):
return [SimToken(c)]

def acceptance_condition(c):
return c[1] > 100

shop.add_event ([customers], [accepted_customers],
accept, guard=acceptance_condition)

This code has an event that takes customers from the customers variable and puts
them into the accepted_customers variable (line 13-14). However, as you can see this
event has a guard condition (line 10-11). The guard condition is a function that evaluates
to true if the second element of the customer tuple, which is where we store the credit
rating of the customer (see line 2-3), is greater than 100. Consequently, this event can only
happen for customers that have a credit rating greater than 100.

Manipulating a Complete Queue

Note that all event behaviors that we have defined so far work on a single value in a variable.
However, in simulation it is often necessary to manipulate all values at the same time. This
is especially true when the values represent items in a queue, such as customers. A simple
example that requires queue manipulation is the situation in which customers will leave
if they see a long queue ahead of them, because this requires that we keep track of the
number of customers in the queue. Another example that requires queue manipulation is
the situation in which some customers leave the queue when they have been waiting for a
long time, while others decide to stay even if they have been waiting long.

While it is possible to implement these examples using the original definition of Petri
nets, this can potentially complicate the model. For example, it is possible to maintain
an additional variable nr_of _customers to keep track of the number of customers in the
queue and increase and decrease this variable when a customer enters or leaves the queue.
However, this requires us to define this variable and make sure that its value is kept up
do date, while in principle this could be as simple as checking the number of tokens in a
variable. This can become cumbersome if we have to do that a lot. Therefore, we will
allow for a slight abuse of the Petri net notation and support handling variables as queues.

Figure 1.7 illustrates for the running example how we can treat a variable as a queue.
The key to doing this is not getting a single value w from the waiting variable, but
getting the entire waiting queue. We can do this by referring to waiting.queue. In the
figure below we then introduce a prototype ws for waiting.queue, but this is purely for
readability purposes.

After we obtained the queue ws, we can manipulate it. The queue is obtained as a
list and we can perform normal list operations on it, such as getting a specific element
from the list or getting the length of the list. For the example we will replicate the normal
behavior of the start event: it gets the first customer from the queue and puts it, together
with a resource, in the busy place with a delay. However, now that we can manipulate
entire queues, more complex behavior is possible as well.
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resource
waiting.queue as ws

waiting start busy

ws[1:] [len(ws)>0]

Figure 1.7: Treating a variable as a queue.

It must be noted that the queue is obtained from the variable as a token. This has two
important implications. First, the queue has a time. However, the time of a queue token is
always 0, meaning that a queue is always available. Second, the queue will be removed
from the variable. This means that it also has to be put back, otherwise not just the first
customer will be removed from the queue, but all customers will be removed from the
queue. For that reason, now you also see an arrow back to the waiting variable that puts
back all elements from the queue except the first element. Also note that the elements in
the queue are tokens themselves. This means that they are stored in the queue with both
their value and their time. Consequently, if we are only interested in the value of a token
we have to explicitly refer to that value using the dot notation. Similarly, we can obtain
the time of a token using the dot notation. This may be useful, for example, if we want to
check how long a customer has been waiting in the queue. Finally, it is important to see
that the queue can also be empty, in which case we cannot get a customer from the queue.
However, when the queue is empty, there is still a queue - en empty queue - to allow the
start event to occur. This will lead to an error, because we cannot get a customer from an
empty queue. Consequently, we have to prevent the start event from happening when the
queue is empty. The guard condition on the start event takes care of that.

In Python we can represent this behavior as follows. This is indeed far more complex
than the definition above, but on the bright side, we can now manipulate queues, which
will allow us to create more complex models in a simpler way further on in this chapter.

def start(ws, r):
¢ = ws[0] .value
return [ws[1:], SimToken((c, r), delay=exp(1/0.8))]

def start_condition(ws, r):
return len(ws) > O

shop.add_event ([waiting.queue, resource], [waiting.queue, busy],
start, guard=start_condition)

Simplifying the Simulation Model

There exist commonly occurring concepts that require us to write the same code structure
very frequently. For example, as every task has a start and a complete event, we always
need to model both for each task. This can become rather cumbersome. For that reason we
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introduce ‘prototypes’. A prototype is a relatively short statement that expands into a more
complex structure. Using prototypes we can represent commonly occurring constructs in
a compact manner. For example, we can represent the task construct, which consists of
multiple events and an intermediate ‘busy’ variable, in a more compact manner using the
BPMNTask prototype as follows.

1 def start_scan(c, r):

2 return [SimToken((c, r), delay=exp(1/9))]

3 BPMNTask(shop, [waiting, cassier], [done, cassier],
4 "scan'", start_scan)

While prototypes can be used for shorter representation, they explode into the common
constructs that they represent. This means that they do not change the simulation model
itself. Figure 1.8 illustrates this for the BPMNTask prototype. The solid black parts of this
model represent what is specified in code above. The dashed grey parts represent what
the prototype expands into in the simulation model. So while the user just specifies a task
labeled ‘scan’ with a particular start_scan function, this expands into a start scan and a
complete scan event as usual, with a variable in between that represents that the resource is
busy with the customer. It is just not necessary to specify these events and the variable
separately anymore.

r cassier
4 b[1]@+0
v start_scan(c, r) | _bloj@+0
W :—__-___E I,’_-‘\\ b :
e e W S
waiting start bsz com_p;I_éEé

\_ scan

start_scan(c, r) = (c, r)@+exp(1/0.8)

Figure 1.8: expansion of the task prototype.

Lambda functions make it possible to further simplify the model, again not changing
anything about how it works. A lambda function is a function that does not have a name
and only has a return statement. A normal function that only has a return statement can
always be rewritten as a lambda function. This will again make the code more compact.
For example, consider the function plus that adds up two numbers.

1 def plus(a, b):
2 return a + b

This function can be rewritten as a lambda function lambda a, b: a + b. Note that
this lambda-function does not have a name and only contains a return statement (without
actually calling it return). Using prototypes and lambda functions, we can rewrite the
simulation model of the shop as follows.
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shop = SimProblem()

waiting = shop.add_var("waiting")
done = shop.add_var("done")
resource = shop.add_var("resource"
resource.put("ri")

BPMNStartEvent (shop, [], [waiting], "arrive", lambda: exp(1))
BPMNTask(shop, [waiting, resource], [done, resource],

"scan_groceries", lambda c, r: [SimToken((c, 1),
delay=exp(1/0.8))1)

While this code is much shorter than the original code, it expands into roughly the
same simulation model as before. The main difference is that an additional done variable
is added where customers are stored after they are done.

Reporting Measurements

SimPN allows you to monitor each event that happens in the simulator. You can use that
information to generate reports. There are some standard reporting functions, but you can
also create your own.

This section first explains how you can generate the most common measurements. It
then explains how you can store detailed results per customer case, which can be used to
calculate advanced measurements at a later stage. Finally, it explains that, when simulating,
you have to take warmup times and replications into account in order to produce valid
measurements.

Simple Reporting

To monitor the events that happen in the simulation, you need to create a reporter. A
reporter is a subclass of the Reporter class that implements the callback function. If
you give your reporter to the simulator, the simulator invokes the callback function each
time an event happens, allowing you to do reporting on the events as they happen. The
following code represents the simplest reporter that you can make. It simply prints each
event that happens.

from simpn.reporters import Reporter
class MyReporter(Reporter):
def callback(self, timed_binding):
print(timed_binding)

shop.simulate(3.0, MyReporter())

This reporter outputs information that looks something like this:

([(arrival, 1@0)], 0, arrive)
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([(waiting, c1@0), (resource, r1@0)], 0, start)
([(busy, ('ct', 'r1')@0.8)], 0.8, complete)
([(arrival, 201)]1, 1, arrive)

([(waiting, c201), (resource, r1@0.8)], 1, start)
([(arrival, 301.7)], 1.7, arrive)

([(busy, ('c2', 'r1')@1.9)], 1.9, complete)
([(waiting, c3@1.7), (resource, r1@1.9)], 1.9, start)
([(busy, ('c3', 'r1')@2.6)], 2.6, complete)

This shows the information that is provided with each event, i.e. the timed_binding with
which the callback function is invoked. Each timed_binding has three parts:

1. the list of (timed) variable values that triggered the event;
2. the time at which the event happened; and
3. the event that happened.

The timed variable values are provided as a list of tuples, where the first element is the
variable name and the second element is the timed value (the token) of that variable. For
example, the first event above happened with the value 1 for the arrival variable, which
was available at time 0. The event that happened was arrive and it happened at time 0. In
other words: at time O the first customer arrived.

We can use this information to create more interesting measurements and reports.
Typically, there are four measurements that are of interest:

* the average processing time per customer, which is the time during which tasks are
performed with customers;

* the average waiting time per customer, which is the time a customer spends waiting,
usually for a resource to become available;

* the average sojourn time or cycle time per customer, which is the total time between
the moment the customer arrives and the moment the customer is ready and leaves;
and

o the utilization rate of a resource, which is the fraction of the time that resource is
busy.

In the example at the end of the previous section, the simulation took 2.5 minutes in
total. The first customer spent 0.8 minutes in processing, the second 0.9 minutes (the
difference between starting to process the customer at time 1 and completing it at time 1.9),
and the third 0.7 minutes, such that the average processing time was 0.7 minutes. The first
customer spent 0 minutes waiting, the second also spent 0 minutes waiting (the difference
between starting to process the customer at time 1 and the customer’s arrival at time 1).
The third customer spent 0.2 minutes waiting, such that the average waiting time rounded
to two decimals was 0.07 minutes. The first customer arrived at t = 0 and was ready at
t = 0.8, the second customer arrived at r = 1 and was ready at ¢ = 1.9, and the third arrived
at ¢ = 1.7 and was ready at t = 2.6. Consequently, the average sojourn time rounded to
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two decimals was 0.87 minutes, the same as the sum of the average processing time and
waiting time.

The cassier worked between f = 0 and t = 0.8 on customer 1, betweent=1and7=1.9
on customer 2, and between t = 1.9 and ¢ = 2.6 on customer 3. Consequently it was busy
for 0.8 +0.9+ 0.7 over 3.0 or 80% of the time.

We can keep track of the measurements that are of interest by keeping them as variables
of the reporter class as follows.

class TimesReporter (Reporter) :

def __init__(self):
self.arrival_times = dict()
self.start_times = dict()
self.complete_times = dict()
self.total_wait_time = 0
self.total_proc_time = 0O

def callback(self, timed_binding):
(binding, time, event) = timed_binding
if event.get_id() == "arrive":
c_id = binding[0] [1] .value
self .arrival_times[c_id] = time
elif event.get_id() == "start":
c_id = binding[0] [1] .value
self.start_times[c_id] = time
self .total_wait_time += time - self.arrival_times[c_id]
elif event.get_id() == "complete":
c_id = binding[0] [1] .value[0]
self.complete_times[c_id] = time
self.total_proc_time += time - self.start_times[c_id]

To make this code work, we slightly changed the arrive function. Instead of creating
an identifier of each customer that is a string containing “c” followed by a sequence number,
we changed it such that each customer identifier is an integer sequence number. In this way
we can uniformly track the customer through the process by number, because the arrive
function itself also only receives a number as input.

The code above stores the arrival time, the start time, and the completion time of each
customer. It also stores the sum of the waiting times of all customers and the sum of
the processing times of all customers. This is all done in the callback function. The
callback function splits up the event information into the binding of variables to values,
the time at which the event happened and the event that happened. When a customer
arrives, it gets the customer identifier from the variable bindings. The customer identifier
is obtained by taking the first element of the binding (binding[0]), which is a pair of a
variable and a token. Then taking the token in that binding (binding[0] [1]) and taking
the value of the token (binding[0] [1] .value). Subsequently, we store the customer’s
arrival time in the arrival_times dictionary. When processing a customer starts we do
something similar to store the customer’s start time and we also add the time the customer
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has waited (which is the difference between the moment at which the customer arrived and
the current time) to the total waiting time. Storing the processing time works similarly.

With this code, once the simulation has completed, the sum of all waiting times and
the sum of all processing times is stored in the corresponding variables. We can then use
that information to calculate the average waiting time, the average processing time and the
average cycle time as follows.

class TimesReporter (Reporter) :

def mean_waiting_ time(self):
return self.total_wait_time / len(self.start_times)

def mean_processing_time(self):
return self.total_proc_time / len(self.complete_times)

def mean_cycle_time(self):
return self .mean_waiting_time() + self.mean_processing_time()

Clearly, having to write this code for each process is a hassle. For that reason, some
standard reporters are provided, such as the ProcessReporter. This reporter reports on
the typical process measurements mentioned above: the average waiting time per case,
the average processing time per case, the average cycle time per case, and utilization rate
of each resource. This reporter heavily relies on the use of process prototypes, i.e. it
reports on the cycle time between BPMNStartEvent and BPMNEndEvent prototypes and
it reports on the waiting times and processing times based on BPMNTask prototypes. If
the simulation problem is specified with those prototypes, the reporter can generate the
measures. The code below illustrates how this can be done for our running example.

BPMNStartEvent (shop, [], [waiting], "arrive", lambda: exp(1/10))

BPMNTask(shop, [waiting, cassier], [done, cassier],
"scan_groceries",
lambda ¢, r: [SimToken((c, r), delay=exp(1/9))]1)

BPMNEndEvent (shop, [done], [], "complete")
reporter = ProcessReporter()

shop.simulate (24%60, reporter)
reporter.print_result ()

Another standard reporter is the EventLogReporter. This reporter stores all events
that happen in a tabular format in a csv file. The information in the csv file can subsequently
be analyzed to provide more detailed insight into the process. The code below shows how
this reporter can be used.
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1 reporter = EventLogReporter('"reporting.csv")
> shop.simulate(24%60, reporter)
3 reporter.close()

A great benefit of this way of reporting is that the result can easily be imported into a
process mining tool where different techniques exist for further analysis. Figure 1.9 shows
the result of mining information from the csv file in the process mining tool Disco'. The
figure shows that during the simulation run 146 customers arrive. For 134 or them the
scan groceries event started and it took on average 16.8 minutes between the arrival of the
customer and the moment at which the scanning of the groceries started. For 12 customers,
the scan groceries event never started. These are customers that were still waiting in queue
when the simulation ended. The scanning of the groceries took on average 7.9 minutes,
which is lower than expected from the problem specification, where scanning is specified
to take on average 9 minutes, but this difference can be attributed to randomness.

®

arrive

146 (instant)

134
16.8 mins

scan_groceries
134 (7.9 mins)

134

instant

complete
134 (instant)

®

Figure 1.9: mined simulation log.

1.7.2  Warmup Time and Replications

To report valid measurements, two aspects must be considered: warmup time and replica-
tions.

"https://fluxicon.com/disco/
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Warmup time must be considered, because when a simulation starts, the simulation
model is empty, meaning there are no tasks being performed, all resources are available,
and there are no waiting lines. For that reason the first case to arrive always sees an empty
system in front of it and will have 0 waiting time. The second customer will see at most
one other case in front of it and have a low waiting time. This will continue until the
simulation model reaches a steady state: a state from which long-term averages of the
simulation variables are not expected to change substantially anymore. This is a very
relative statement, because - due to randomness - the variables will actually continue
to change over time. The question is if they change substantially and that is usually a
subjective decision. Figure 1.10 illustrates that best and usually, you will want to plot a
graph like the one shown in this figure to determine the warmup time for a simulation.
This graph is created using the standard WarmupReporter.
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Figure 1.10: A graph that illustrates warmup time.

The figure shows the warmup time for the simulation of our running example. Specifi-
cally, it plots the average cycle time of all cases that have arrived until simulation time #. It
clearly shows that initially the cycle time is very low and then rapidly increases over the
first 25,000 minutes or so, before reaching an steady state. It subsequently continues to
oscillate around the steady state, but that can be considered normal behavior.

Clearly, if we used the measurements of the average waiting time in the first 5,000
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minutes, we would get an average that is (much) lower than in the steady state and therefore
invalid. For that reason, we explicitly exclude events during the warmup time from our
reported measurements. It is best to take a margin here, to ensure that we definitely do not
include measurements that are still done in the warmup time. For our example, we could
assume the warmup time to be 50,000 minutes and only report the measurements on events
that happened after 50,000 minutes in simulation time.

It is recommended to also use warmup times in the situation of a supermarket, where it
is actually valid that the system starts empty in the morning when the supermarket opens.
In such simulations, it is better to identify different scenarios. A scenario is a variation of
a simulation model in which the effect of specific settings are explored. In our example
we could consider the scenario in which the supermarket has just opened and is filling up
with customers separately from the scenario in which the supermarket is operating in its
steady state during the day. For both of these scenarios we can have a different arrival rate
and, optionally, a different number of resources. The problem with simulating a single
scenario that includes both the interval in the morning and during the day is that you may
end up dimensioning your supermarket for the ‘average’ case, meaning it will likely be
overdimensioned for the morning and underdimensioned for the day interval and for that
reason represent the worst of both worlds.

Replications are the second aspect of simulation that must be considered to produce
valid measurements. They are repetitions of the simulation. Replications of a simulation
are absolutely necessary, because simulations involve a lot of randomness, and we want to
make sure that a conclusion that we draw is valid and not due to randomness.
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Figure 1.11: A graph that illustrates replications.

Figure 1.11 illustrates the need to do replications. The figure shows two scenarios
for our running example. One in which there are 3 cassiers and one in which there are 4
cassiers. For both scenarios we measure the average waiting time of the customers and for
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both scenarios we did 50 replications. The small dots represent the average waiting time
for a particular replication. To be precise: a warmup time of 20,000 minutes is considered
and events that happen within the warmup time are not taken into account when computing
the average waiting time. The average waiting time is computed over customers that arrive
and start in the interval between 20,000 and 100,000 minutes of simulation time. Now
suppose that we would do no replications for the scenarios. Then it is quite possible that
we get a relatively low waiting time from the simulation with 3 cassiers (the lowest point
on the graph has an average waiting time of around 8.7 minutes) and a relatively high
waiting time from the simulation with 4 cassiers (the highest point on the graph has an
average waiting time of around 9.7 minutes). This may lead us to conclude that having 3
cassiers leads to a lower waiting time for customers than having 4 cassiers, which is of
course not true. It may of course be true on some days, when it happens that with 4 cassiers
a lot of customers arrived with many groceries, while with 3 cassiers a lot of customers
arrived with few groceries. However, this is a random effect and in general more cassiers
means less waiting time for customers. This is indeed nicely illustrated by the box plots
that are drawn for the replications. These illustrate that it is very likely that the average
waiting time is higher for 3 cassiers than for 4. To be sure, you can still do a statistical test
on the collections of replications.

The code below shows how you can do replications of a simulation and calculate results,
while taking the warmup time into consideration. Key to this are the store_checkpoint
and restore_checkpoint functions that can be used to reset the simulator to its initial
state and run a new, fresh, simulation.

shop.store_checkpoint("initial state")
average_cycle_times = []

NR_REPLICATIONS = 50

SIMULATION_DURATION = 40000

WARMUP_TIME = 20000

for _ in range(NR_REPLICATIONS):
reporter = ProcessReporter (WARMUP_TIME)
shop.restore_checkpoint("initial state")
shop.simulate (SIMULATION_DURATION, reporter)

average_cycle_times.append(reporter.total_cycle_time /
reporter.nr_completed)

Verification, Validation, and Sensitivity

Once you have built your simulation model, you should check if it is correct and if the
conclusions that you draw from it are correct. There are three important checks that you
can do for those purposes: verification, validation, and sensitivity analysis.

Verification of a simulation model concerns checking if the model behaves as you
expect it to behave. When you constructed the model, you explicitly created a particular
behavior regarding: the inter-arrival of customers, the tasks that are performed for these
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customers and the order in which they are performed, the amount of time these tasks take,
and the resources involved in these tasks. When verifying the model you should check
if the model behaves as you expect with respect to these aspects. There are two ways in
which you can easily do that.

The first way to verify a simulation model is by adding print statements to your code
that print each event that happens for a customer. You can use a SimpleReporter for that.
You can then manually inspect if the customers behave in the way you expect them to
behave. For ease of reading, you may want to start with one customer. You may want to
run the simulation multiple times for one customer, to check multiple random behaviors
from the simulation, such as if the different random draws from the processing time are
reasonable, and - if there are alternative tasks begin performed - if the sequences of tasks
are reasonable and if all sequences of tasks are indeed being performed. Next, you will
want to try the same for multiple customers. This allows you to check if the sharing of
resources between customers is indeed done correctly and if the inter-arrival times are
indeed correct.

The second way to verify a simulation model is by applying process mining to the event
log that can be generated by the simulator using the EventLogReporter. This allows
you to produce a process model from the simulation like the one shown in Figure 1.9.
This process model is very easy to inspect for correctness, especially if you constructed a
process model before you created the simulation model. In that case you can do a direct
comparison between the original process model and the mined process model.

Validation of a simulation model concerns checking if the model behaves similarly to
the real-world process that you are trying to represent. The two main ways of validating
your model are through face validation and through data validation.

Face validation involves asking one or more domain experts if they think the model
behaves according to the process in the real world. Assuming you have already validated
the process model on which you based your simulation, you should focus on measurements
that are not immediately visible from the process model. Specifically, this includes: the
waiting time, the cycle time, the resource utilization and the fraction of customer cases
that have a particular final outcome. Face validation is a very imprecise way of validation,
because domain experts may not know precisely what the values are for the parameters that
are being checked. When using face validation, it is best to ask for quantitative evidence of
the correctness of the measurements.

Data validation is a more precise way of validating if your model behaves according to
the process in the real world. Similar to face validation, you will want to focus on validating
measurements that are not immediately visible from the process model. Data validation
concerns checking them against measurements made in the real world and assumes that
such measurement data is available. For example, you can check the utilization rate
calculated by your simulation model to the actual measured percentage of time the people
who work in the process in the real world are actively working. The clear drawback of this
form of validation is that such measurements may not always be available or accurate.

Sensitivity analysis concerns checking how sensitive particular measurements, calcu-
lated by the simulation model, are to changes in the parameters of the model. In this context
we mainly use it to get an idea of the validity of our conclusions in light of imprecision of
our parameters. For example, we may already know that resources are only available to
work in the process around 70% of the time (we will see further on in this chapter how we
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can implement that in the simulation model) and we want to check if 99% of our customer
cases are handled within 2 weeks. We may also know that the 70% availability of our
resources is an imprecise estimate. In that case we will want to check how sensitive our
conclusion, that 99% of the customer cases are handled within 2 weeks, is to the availability
of the resources; does the conclusion still hold if the availability is 65% or 60%?

Simulating Business Process Constructs in SimPN

Above, we started by modeling a very simple process with one task. Of course multiple
tasks can be performed for a customer case as well and these tasks can be performed in
sequence, as alternatives to each other or in parallel. We will consider these and other
constructs for adapting the structure of the business process in this section.

Sequential Tasks

The first extension is putting multiple tasks in a sequence. Figure 1.12 shows an example
of two tasks in a sequence. The first task is the original task for scanning the groceries and
the second task is bagging the groceries, which is performed by another type of resource:
a bagger.

scan groceries

Cassier(1)

expo(9 minutes)
customer arrives

expo(every 10 minutes)

bag groceries

expo(9 minutes)

Bagger(1)

Figure 1.12: a process with sequential tasks.

A sequence of tasks can simply be implemented by repeating the code for starting and
completing the next task. After completing the first task, the customer must be placed in
the queue variable of the next task. The code below illustrates this. In this code, lines 3-5
and 13-15 show the original code for performing the scanning of the groceries, which is
followed by similar lines of code 7-9 and 17-19 for performing the bagging of the groceries.
As the bagging of the groceries involves a different resource, this resource also has to
be created. Note that the complete event functions have been adapted to also pass the
customer to a next variable. To that end, the complete_scan function returns a list with
two tokens. The first token contains the resource from the tuple b and the second token
contains the customer from the tuple b. These are placed in the cassier and bag_queue
variables respectively.
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shop = SimProblem()

scan_q = shop.add_var("scan queue")
cassier = shop.add_var("cassier"
cassier.put("ri")

bag_q = shop.add_var("bag queue')
bagger = shop.add_var("bagger")
bagger.put("bl")

done = shop.add_var("done")

def scan(c, 1):
return [SimToken((c, r), delay=exp(1/9))]
BPMNTask(shop, [scan_q, cassier], [bag_q, cassier], '"scan", scan)

def bag(c, r):
return [SimToken((c, r), delay=exp(1/9))]
BPMNTask(shop, [bag_q, bagger], [done, bagger], "bag", bag)

def interarrival_time():
return exp(1/10)
BPMNStartEvent (shop, [], [scan_q], "arrive", interarrival_time)

shop.simulate(60, SimpleReporter())

Clearly this code can easily be extended with any number of sequential tasks. It is also
important to note that the second task in a sequence can also be performed by the same
type of resource. To enable that, the start and complete events should simply use the same
resource variable.

Choice

It is also possible to create alternative paths through a process as illustrated in Figure 1.13.
In this figure, after performing the first task, there is a 25% chance that the customer will
use the ATM. Accordingly, there is a 75% chance that the customer does not and just
leaves.

Figure 1.14 illustrates this concept graphically. It is realized by the event putting a
token in the variable of choice for further processing and no token (or None) in the other
variable. This is realized by the following code, which randomly samples a value between
1 and 100 (a percentage). If that value is less than or equal to 25, it returns a token as its
first output and no token as its second output, and otherwise the other way around. The first
output is the queue for the ATM. The second output is the done variable, which represents
customers that are done.

def choose(c):
percentage = uniform(1,100)
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Cassier(1)

scan groceries x 75% >O
expo(9 minutes)

expo(every 10 minutes) 25%

customer arrives

ATM(1)

use ATM .
expo(9 minutes)

Figure 1.13: a process with choice.

3 if percentage <= 25:

4 return [SimToken(c), None]

5 else:

6 return [None, SimToken(c)]

7 shop.add_event ([to_choose], [atm_queue, done], choose)

¢, if uniform(1, 100) <= 25

( ) C atm_queue

to_choose choose

¢, otherwise

done

Figure 1.14: graphical representation of the choice construct.

1.9.3 Parallellism

It is of course also possible to perform tasks in parallel. Figure 1.15 shows this. In this
figure, when the customer arrives the groceries are scanned and in parallel the ATM is used
by the customer. The process only completes when both the task of scanning the groceries
and the task of getting money from the ATM is done.

Figure 1.16 illustrates this concept graphically. We create this construct by adding two
events, one to split the processing of the customer into multiple parallel paths and one to
join the parallel paths again. The split event takes the customer from one variable and
places copies of it into two variables. Now two tasks can happen at the same time, one
using the copy from one variable and one using the copy from the other variable. This
is because the rules state that “an event can happen when each of its specified parameter
variables has a value”. As there can be multiple events now with a customer value, multiple
events can happen. The join event merges the parallel paths again by waiting for the
same customer to arrive via both parallel paths, i.e. both its input variables. Note the
guard condition that the values arriving must be the same (customer). Otherwise, it is also
possible to join two parallel paths originating from different customers.
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scan groceries

Cassier(1)

expo(9 minutes)

customer arrives

expo(every 10 minutes)

use ATM

ATM(1)

expo(9 minutes)

Figure 1.15: a process with parallellism.

shop.add_event ([to_split], [scan_queue, atm_queue],
lambda c: [SimToken(c), SimToken(c)], name="split")

shop.add_event ([wait_sync_atm, wait_sync_scan], [to_done],
lambda c1, c¢2: [SimToken(c1)], name="join",
guard=lambda cl, c2: cl == c2)

In more detail, the split event takes the token from the to_split variable and places
copies of it into the scan_queue and atm_queue variables that are then input for the scan
groceries and use atm tasks. The join event takes tokens from the wait_sync_atm and
wait_sync_scan variables, where the customers are left after the respective tasks are
completed. It checks if the tokens represent the same customer and then places one of the
tokens (it does not matter which one, because they are the same anyway) in the to_done
variable, from which the end event will be enabled.

AN )T ’i scan_groceries pommme- cl

e e 7 .
C scan_queue wait_sync_scan
C c2
to_split split { 1 join
P e i S—— »  use atm  p--—------ )
- - ] [c1==c2]
atm_queue wait_sync_atm

Figure 1.16: graphical representation of the parallel construct.

Clearly, the parallel construct, the choice construct and the sequence construct can
easily be combined. For example, we can put the parallel construct in sequence with other
tasks, like enter shop and leave shop. We can also put a task, such as bag groceries in
parallel with the use ATM task, but in sequence with the scan groceries task. Similarly,
we can combine these constructs with choice constructs to introduce choice in addition to
sequential execution and parallelism of tasks.

—=0)

to_done
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Events

Figure 1.17 shows a process that contains an event. The process is different from the
running example. It represents a simple sales process. In this process customer sales
requests arrive at a rate that is exponentially distributed with an average of one per ten
days. After a sales request arrives, first an offer is created, which takes a time that is
exponentially distributed with an average of four days. The organization then waits for the
response of the customer to the offer, which is done by means of an event. An event differs
from a task in that it does not require the resources to do anything, i.e. the administrator is
not needed for the event. It simply involved waiting until the event occurs. The resources
can process tasks in the meantime. The waiting time for the event to occur is exponentially
distributed with an average of four days. After that the response must be processed as a
task performed again by the administrator.

process
response

create offer

expof4 days) expo(4 days)

Administrator(1)

customer arrives wait for response

expo(every 10 days) expo(4 days)

Figure 1.17: a process with events.

The code below shows how an event can be simulated in Python. It is relatively easy
and - like a task - involves waiting for the required time, but - unlike a task - it is not
necessary to use a resource.

BPMNStartEvent (sales, [], [offer_queue],
"customer_arrived", lambda: exp(1/10))

BPMNTask(sales, [offer_queue, administrator],
[to_response, administrator], "create_offer",
lambda c, r: [SimToken((c, r), delay=exp(1/4))])

sales.add_event([to_response], [processing_queue],
lambda c: [SimToken(c, delay=exp(1/4))],
name="wait_for_response")

BPMNTask(sales, [processing_queue, administrator],
[done, administrator], "process_response",
lambda c, r: [SimToken((c, r), delay=exp(1/4))])

Deferred Choice

A deferred choice is a choice that cannot be made immediately, but has to be made when
some event happens at a future point in time. This is unlike a regular choice that can be
made immediately at the moment the choice is encountered in the process. Figure 1.18
shows an example of a deferred choice. The choice has to be made after creating an offer.
However, it cannot be made immediately. The process has to wait either until the customer
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sends the response to the offer, or until 5 days have passed, whichever happens first. The
process can continue when either one of these events occurs.

process
response

create offer

expo(4 days)

expo(4 days)

customer arrives wait for response

expo(every 10 days) expo(4 days)

O

wait for timeout

Administrator(1)

(5 days)

Figure 1.18: a process with deferred choice.

The code below shows how this process can be modeled in Python. Here, we mimic
the deferred choice with a regular choice. The choice is made by sampling the time it takes
the customer to respond. If this is less than 5 days, a token is generated with that waiting
time. If the waiting time is 5 days or more, it is capped at 5 days. The reason for that is
that the customer will be removed from the process in that case and consequently the wait
will never be for more than 5 days.

We can use the waiting time information to determine what happens next. If waiting
for a response takes less than 5 days, the process waits for the response by placing a token
in the awaiting_response variable. Since the token has the sampled waiting time as
delay, it will only be available after the sampled waiting time. Then the task is enabled
to process the response. Otherwise, if the response takes 5 days or longer to arrive, the
process waits for the timeout after 5 days by placing the token in the to_leave variable
instead with 5 days as a delay.

1 def choose(c):
2 waiting_time = exp(1/4)

3 if waiting time < 5:

4 return [SimToken(c, delay=waiting_time), None]
5 else:

6 return [None, SimToken(c, delay=5)]

s shop.add_event([to_choose], [awaiting_response, to_leave], choose)

For this particular process it may not be necessary to wait for the timeout after 5 days,
because nothing happens during or after that time. However, in general it is good to also
handle the timeout event according to the principles of the simulation. Of course if we add
reporting functionality after the timeout or some other task to remind the customer that
they should still submit the response, it is necessary to wait for the timeout after 5 days.

In the example above we mimic the deferred choice with a regular choice. We can
do that, because we can look into the future by already generating the time it takes to
wait for a response before actually having to wait. However, it is not always possible to
look into the future like that. If that is not possible, we cannot mimic the deferred choice
with a regular choice. Figure 1.19 shows an example in which this is the case. This is an
extension of the supermarket example, where the customer waits either for the cassier to
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become available or for a maximum of 15 minutes. If the 15 minutes expire before the
cassier becomes available, the customer leaves before the task is performed. Note that if
the task is started for the customer before the 15 minutes expire, the task will be completed
for the customer, even if the 15 minutes expire while the task is being executed.

scan groceries

expo(9 minutes)
customer arrives

Cassier(1)

expo(every 10 minutes)

% ~O

wait for timeout

(15 minutes)

Figure 1.19: a process using deferred choice to maximize waiting time.

The code below shows how this deferred choice can be modeled. We introduce a
deferred choice event that places the customer in the queue as usual, but also generated a
token with a delay of 15 minutes, the timeout token. The leave event is enabled by this
token and the customer in the queue. When the leave event is enabled (after 15 minutes), it
can remove the timeout token and the customer from the queue. This must of course be the
customer for which this particular timeout token was created and there is a guard condition
that enforces this. The scan groceries task can also be performed as usual. After scanning
the groceries an additional remove event is added. This event only exists to remove the
timeout token. It takes the customer and passes it on as usual, but it also takes the timeout
token. This event is not strictly necessary for the correct operation of the model, but it
is good practice to remove any remaining tokens from the process before it completes.
Figure 1.20 illustrates this construct.

S c2

to_remove

remove
[c1==c2]

1
to_deferred_choice <

to_leave leave

[c1==c2]

Figure 1.20: graphical representation of the deferred choice construct.

BPMNStartEvent (shop, [], [to_deferred_choice],
"customer_arrived", lambda: exp(1/10))

shop.add_event ([to_deferred_choice], [scan_queue, to_leave],
lambda c: [SimToken(c), SimToken(c, delay=15)],
"deferred_choice")

cl

done

left
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s shop.add_event([scan_queue, to_leave], [to_left],
9 lambda c, 1: [SimToken(c)], "leave",
10 guard=lambda cl, c2: cl==c2)

1» BPMNEndEvent (shop, [to_left], [], "left")

14 BPMNTask(shop, [scan_queue, cassier], [to_remove, cassier],
15 "scan_groceries",

16 lambda c, r: [SimToken((c, r), delay=exp(1/9))])

s shop.add_event([to_remove, to_leavel, [to_done],

19 lambda c1, c2: [SimToken(cl1)], "remove",

20 guard=lambda cl, c2: cl==c2)

» BPMNEndEvent (shop, [to_done], [], "done")

1.9.6 Different Case Types

It is possible that different types of customers arrive with different interarrival rates that
have to be handled differently either in part or in full. Figure 1.21 shows an example of a
process for which this holds. This is a variant of the sales process explained before. In
this variant we see the arrival of customers with simple sales requests at an exponential
rate with an average of one per 15 days. We see the arrival of customers with complex
sales requests at an exponential rate with an average of one per 30 days. These types
of customers behave similarly with respect to the creation of the sales offer and waiting
for the response to that offer. However, their responses are processed differently. Most
importantly, for the purposes of the simulation the processing of the different types of
responses takes a different amount of time.

process simple

simple response

O_

simple customer arrives expo(3 days)

create offer

expo(every 15 days) 0

. ?
wait for response customer type?
process complex

O_ expo(4 days) response
complex expo(6 days)

expo(4 days)

—0
—0

Administrator(1)

complex customer arrives

expo(every 30 days)

Figure 1.21: a process with different case types.

We create different types of customers with different arrival rates, using different
start events as shown in the code below. The start events add a data field the tuples that
represent the customer tokens, which carry either the value simple or complex. Note that
the start event prototype automatically creates customer tokens as tuples, where the first
element is the unique customer identifier, so each customer token looks like (1, simple);
a combination of a customer identifier and the data field. This property is used further on
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in the process to choose whether a simple response or a complex response is written to the

customer.

BPMNStartEvent (shop, [], [offer_queue],
"simple_customer_arrived", lambda: exp(1/15),
lambda: [SimToken("simple")])

BPMNStartEvent (shop, [], [offer_queue],
"complex_customer_arrived", lambda: exp(1/30),
lambda: [SimToken("complex")])

BPMNTask(shop, [offer_queue, administrator],
[to_response, administrator], '"create_offer",
lambda c, r: [SimToken((c, r), delay=exp(1/4))])

shop.add_event ([to_response], [to_choose],
lambda c: [SimToken(c, delay=exp(1/4))],

name="wait_for_response")

def choose(c):

if c[1] == "simple":
return [SimToken(c), None]
else:

return [None, SimToken(c)]
shop.add_event ([to_choose],
[simple_response_q, complex_response_q], choose)

BPMNTask(shop, [simple_response_q, administrator],
[to_done, administrator], "process_simple_response",
lambda c,r: [SimToken((c, r), delay=exp(1/3))])
BPMNTask (shop, [complex_response_q, administrator],
[to_done, administrator], "process_complex_response",
lambda c,r : [SimToken((c, r), delay=exp(1/6))]1)

BPMNEndEvent (shop, [to_done], [], "done")

Simulating Various Resource Constructs

In the previous section we explained how a process can be extended by adding multiple
tasks and various types of relations between those tasks. However, each of the tasks
were performed by single resources that were always available. This can of course also
be extended: there may be multiple resources, resources may work on a schedule - and
consequently not always be available, and there may be different strategies for choosing
which case to handle first. In this section we will consider how these - and other - constructs

can be modelled.
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1.10.1 Roles with Multiple Resources

In the previous examples, we always assumed that there was one resource in each role.
The most obvious resource extension is to model that there are multiple resources in a role.
Figure 1.22 shows a simple example of this. In this figure there is not one cassier, but there
are five. For the example, we also increased the arrival rate of customers (otherwise it does
not make much sense to have five cassiers). In Figure 1.22 one customer arrives every two
minutes instead of every 10 minutes.

Cassier(5)

. scan groceries .
expo(9 minutes)

customer arrives

expo(every 2 minutes)

Figure 1.22: a role with multiple resources.

Increasing the number of resources per role is not only easy to model in BPMN, but
also in SimPN. We simply add more cassier values to the cassier variable, one for each
cassier that we need. In the running example, we can change the number of cassiers as
follows:

i cassier = shop.add_var('"cassier")
» for i in range(1l, 5):
3 cassier.put("r" + str(i))

1.10.2 Multiple Queues

If we simply increase the capacity of a role, the resources in this role share a queue.
Customers will arrive in the queue and each resource - when it becomes available - will
serve the customer at the head of the queue. Conversely, resources can also have their own
queue. In that case, when a customer arrives, it needs to make a choice of the queue in
which it will take place and consequently the resource by which it will be served.

While this can be modeled in BPMN, it is difficult to do so and leads to replication of
tasks. Therefore, we will not model the construct in BPMN, but instead look immediately
at the SimPy code for modeling this construct.

i to_choose = shop.add_var("to choose")

;3 waiting_ 1 = shop.add_var('cassier 1 queue")
s+ waiting 2 = shop.add_var('"cassier 2 queue")
s cassier_1 = shop.add_var('"cassier 1")

¢ cassier_2 shop.add_var("cassier 2")

7 cassier_1.put("cl")

s cassier_2.put("c2")

0 to_done = shop.add_var("to done")
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BPMNStartEvent (shop, [], [to_choose], "arrive", lambda: exp(1/6))

def choose(c, cl_queue, c2_queue):
if len(cl_queue) < len(c2_queue):
cl_queue.append(SimToken(c))
else:
c2_queue. append (SimToken(c))
return [cl_queue, c2_queue]
shop.add_event ([to_choose, waiting_1.queue, waiting_2.queue],
[waiting_1.queue, waiting_2.queue], choose)

BPMNTask(shop, [waiting_ 1, cassier_1], [to_done, cassier_1],
"scan_groceries_1",
lambda c, r: [SimToken((c, r), delay=exp(1/9))])
BPMNTask(shop, [waiting 2, cassier_2], [to_done, cassier_2],
"scan_groceries_2",
lambda c, r: [SimToken((c, r), delay=exp(1/9))])

BPMNEndEvent (shop, [to_done], [], "leave")

To model this construct, first we need to model multiple cassiers and cassier queues. A
sensible strategy for the customer is to look at the number of customers in front of it in the
queues and then select the queue with the lowest number. The code illustrates this strategy.

We model the problem as a choice that the customer makes. First, we model two tasks,
one for each queue, each with its own cassier and queue (line 3-8). Now we have to choose
for an arriving customer, which of the two queues the customer goes into. We model this
as a choice (line 14-21). When a customer arrives it is put into the to_choose variable.
The choose event takes a customer from that variable as input and it also takes both
queues, waiting_1.queue and waiting_1.queue as input. Note that we are handling
the variables as queues now, such that the choose event takes entire queues rather than a
single customer from the queue (also see Section 1.5). Now that we have the complete
queue in the choose behavior (line 14-19), we can compare the queue lengths and add the
customer to the appropriate queue (line 15-18). Finally, we have to put the queues back,
with the customer attached (line 19).

Roles with Priority Queues

By default, values are taken from variables in a first-come-first-serve (FCFS) manner,
which also means that customers are handled by resources in a first-come-first-serve
manner. However, in practice there are many other possible strategies according to which
customers are handled when then arrive in a waiting queue. In SimPN these strategies can
be implemented by changing the order in which values are taken from variables, using the
priority parameter of a variable, which must be a function that takes a token (consisting
of a timestamp and a value) and returns a number for that token. Tokens with a lower
number are then used before tokens with a higher number. This is illustrated in the code
below.
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scan_queue = shop.add_var("scan queue",
priority=lambda token: token.value[1])

BPMNStartEvent (shop, [], [scan_queue], "customer_arrived",
lambda: exp(1/10),
behavior=lambda: [SimToken(randint(1l, 2))]1)

BPMNTask(shop, [scan_queue, cassier], [done, cassier],
"scan_groceries",
lambda c, r: [SimToken((c, r), delay=exp(1/9))])

BPMNEndEvent (shop, [done], [], "done")

In this example, arriving customers are given an additional value that is either 1 or 2
as data (line 6-8). This value represents the priority of the customers. Customers with
a priority of 1 should be handled before customers with a priority of 2. Remember that
customers always have a their unique identifier as first element. This random number
therefore becomes their second element. Now we change the priority of the scan queue
variable, by changing the priority function (line 1-2). The priority function takes a token
and returns the second element of that token’s value as its priority. Consequently, customers
with the number 1 will now be taken before customers with the number 2. Note that the
default priority function equals lambda token: token.time, meaning that tokens that
were placed in the queue with a lower timestamp are handled first.

The code above generates the priority as a data-element of a customer when it arrives.
It is of course quite possible to combine the priority construct with the different case types
construct from Section 1.9.6. By doing so customers with different levels of priority, such
as preferred customers and regular customers, can be generated separately according to
their own arrival rate.

The priority construct can be used to model other concepts than ‘priority customers’ as
well. We can, for example, easily model the earliest-deadline-first (EDF) strategy, in which
customers have a deadline and customers that are closer to their deadline should always be
handled before customers for which the deadline is further into the future. Assuming each
customer has a deadline that indicates some moment in simulation time, we can model
the EDF strategy by using that as the priority with which values are taken from the queue
variable. Remember that in lower numbers have priority over higher numbers, so this
would lead to customers with a deadline that is lower (i.e. closer in time) to be handled
before customers with a deadline that is higher (i.e. further into the future).

Resources with Limited Availability

Resources may not always be available to handle customers: they may work on a schedule,
take breaks at regular intervals, or perform activities in other processes as well.

We can model this by also modeling the behavior of resources. Until now, we took
resources from a variable in which they were always available (if they were not busy
processing a task). We can also take resources from that variable to send them on a break
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or make them do something else. The code below illustrates this.

time = shop.var("time")
cassier = shop.add_var("cassier"
cassier.put(("r1", 0))

BPMNTask(shop, [scan_queue, cassier], [done, cassier_break_check],
"scan_groceries",
lambda c, r: [SimToken((c, r), delay=1)])

def check_break(c, time):
if time > c[1] + 2:
return [SimToken(c, delay=2)]
else:
return [SimToken(c)]
shop.add_event ([cassier_break_check, time], [cassier], check_break)

Note that this code makes use of the reserved variable time that always contains the
current simulation time. Furthermore, it associates the cassier with an identifier (r1) as
well as the time at which it last returned from a break (initially this time equals 0). The
code then defines a task that takes cassiers from the cassier variable as usual, but it puts
cassiers back into the cassier_break_check variable. The rest of the code presents what
happens with cassiers from then on. If the current time is greater than the last time a
cassier went on a break plus 2 (i.e., the cassier went on a break longer than 2 time units
ago), the cassier is put back into the cassier variable, but with a delay of 2 time units,
effectively making it unavailable for processing tasks (i.e., on a break) for 2 time units.
Otherwise, the cassier is simply put back into the cassier variable, making it available
again immediately.

Resources with Limited Queue Space

Resources can have limited queue space. If that queue space is exceeded, customers may
leave or other mechanisms may be put into place to handle customers efficiently during
peak times. The code below shows an example in which customers simply leave when
they arrive and they see that there are already 5 customers waiting.

BPMNStartEvent (shop, [], [to_check_queue],
"start", lambda: exp(1/9))

def check_queue_length(customer, complete_queue):
if len(complete_queue) < 5:
complete_queue.append (SimToken (customer))
return [complete_queue, None]
else:
return [complete_queue, SimToken(customer)]
shop.add_event ([to_check_queue, waiting.queue],
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[waiting.queue, to_leave], check_queue_length)

BPMNTask(shop, [waiting, cassier], [done, cassier],
"scan_groceries",
lambda c, r: [SimToken((c, r), delay=exp(1/9))])

BPMNEndEvent (shop, [done], [], "complete")
BPMNEndEvent (shop, [to_leave], [], "leave')

The code uses a choice construct and operates on the queue variable as a whole rather than
a single value from the variable (see Section 1.5). The choice that is made by the customer
in the to_check_queue variable is whether to go into the queue, in case there are less than
5 people waiting, or to leave otherwise. To that end, the check_queue_length event takes
a customer from the to_check_queue variable and the entire queue of waiting customers
waiting.queue. It then checks the length of the queue and either places the customer in
it or puts the customer in the to_leave variable (line 3-10). In any case the queue must
be placed back into the waiting variable with or without the customer.
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